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Abstract

The effect of temperature dependent viscosity on laminar mixed convection boundary layer flow and heat transfer on a continuous
vertical surface is studied. The fluid viscosity is assumed to vary as an inverse linear function of temperature. Local similarity solu
obtained for the boundary layer equations subject to isothermally moving vertical surface with uniform speed. The effect of various g
parameters, such as Prandtl numberPr, the mixed convection parameterλ = S Grx/Re2

x , and the viscosity/temperature parameterθr which
determine the velocity and temperature distributions, the local heat transfer coefficient, and the local shear stress coefficient at the
studied. Significant changes are obtained in dimensionless local heat transfer and shear stress coefficient at the surface when th
of θr has small values for eachλ. Critical values ofλ are obtained for predominate natural convection and buoyancy shear stress for a
and opposing flow for variousθr .
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Continuously moving surface through an otherwise q
escent medium has many applications in manufactu
processes. Such processes are hot rolling, wire draw
spinning of filaments, metal extrusion, crystal growing, c
tinuous casting, glass fiber production, and paper pro
tion [1–3].

Since the pioneer study of Sakiadis [4] who develop
a numerical solution for the boundary layer flow field o
stretched surface, many authors have attacked this pro
to study the hydrodynamic and thermal boundary layers
to a moving surface [5–14].

Suction or injection of a stretched surface was introdu
by Erickson et al. [15] and Fox et al. [16] for uniform surfa
velocity and temperature and by Gupta and Gupta [17]
linearly moving surface. Chen and Char [18] have stud
the suction and injection on a linearly moving plate s
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,

ject to uniform wall temperature and heat flux and the m
general case using a power law velocity and temperature
tribution at the surface was studied by Ali [19]. Magyari
al. [20] have reported analytical and computational soluti
when the surface moves with rapidly decreasing veloc
using the self-similar method.

In all papers cited earlier the effect of buoyancy fo
was relaxed and the following papers have taken it into c
sideration. Such papers are those of Lin et al. [21], Ali a
Al-Yousef [22–24], Chen [25,26], and by Ali [27].

To date, researchers have only considered the effe
constant viscosity on boundary layer developed by a con
uously moving surface. However, it is known that the flu
viscosity changes with temperature [28] for example the
solute viscosity of water decreases by 240% when the
perature increases from 10◦C to 50◦C. Furthermore, Pop e
al. [29], and Elbashbeshy and Bazid [30] have studied
effect of variable viscosity using the similarity solution wi
no buoyancy force.

Therefore, in order to get more accurate informat
about the flow and temperature profiles the present pape
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Nomenclature

a constant
f dimensionless stream function
Grx Grashof number(gβ(Tw − T∞)x3/ν2

k thermal conductivity
Nux Nusselt number(hx/k)

Pr Prandtl number(ν/α)

Rex Reynolds number(Uwx/ν∞)

S dummy parameter
T temperature
Tr viscosity reference temperature
u velocity component inx-direction
v velocity component iny-direction
x coordinate in direction of surface motion
y coordinate in direction normal to surface motion

Greek symbols

α thermal diffusivity
β thermal expansion coefficient
γ constant
η similarity variable
θ dimensionless temperature
θr dimensionless reference temperature
λ buoyancy parameter(S Grx/Re2

x)

µ absolute viscosity
ν kinematic viscosity
ρ density

Subscripts

w condition at the surface
∞ condition at ambient medium
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vestigates the effect of viscosity variation with temperat
on mixed convection boundary layer adjacent to a con
uously moving vertical surface. However, the analyses
focused on the case of uniformly moving isothermal surf
for different Prandtl numbers corresponding to water and
using the local similarity approach.

The mathematical formulation of the problem is p
sented in Section 2, followed by numerical solution pro
dure in Section 3. Results and discussion are present
Section 4, and finally conclusions are given in Section 5

2. Mathematical analysis

Consider the laminar steady two-dimensional motion
mixed convection boundary layer flow due to a vertica
moving isothermal surface. Using Boussinesq approxi
tion for incompressible viscous fluid environment in ad
tion to that, the fluid viscosity is assumed to vary as
inverse linear function of temperature (Ling and Dybbs [3
and Lai and Kulacki [32]):

1

µ
= 1

µ∞
[
1+ γ (T − T∞)

]
, or

1

µ
= a(T − Tr) (1)

where

a = γ

µ∞
and Tr = T∞ − 1

γ
(2)

are constants, and their values depend on the reference
of the fluid. In general, it can be seen that for liquids a
gases a is> 0 and< 0, respectively [31]. It should be men
tioned that the above model has used by Hossain et al.
and Hossain and Munir [34] in studying natural convect
from a vertical wavy cone and the mixed convection from
vertical flat plate respectively.

The equations governing this convective variable visc
ity fluid flow are
te

∂u

∂x
+ ∂v

∂y
= 0 (3)

u
∂u

∂x
+ v

∂u

∂y
= Sgβ(T − T∞) + 1

ρ∞
∂

∂y

(
µ

∂u

∂y

)
(4)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(5)

subject to the following boundary conditions:

u = Uw, v = 0 @y = 0

T = Tw @ y = 0

u → 0, T → T∞ @ y → ∞ (6)

Thex coordinate is measured along the moving surface f
the point where the surface originates, and they coordinate
is measured normal to it (Fig. 1). Where,u and v are the
velocity components inx- andy-directions respectively an
S is a dummy parameter stands for 0,+1, or−1. Using the
stream functionψ and the following transformation:

ψ = √
2ν∞Re1/2

x f (η), η = y

x
√

2
Re1/2

x (7)

θ(η) = (T − T∞)

(Tw − T∞)
(8)

where

u = ν∞
x

Rexf
′(η), Rex = Uwx

ν∞

v = ν∞Re1/2
x

x
√

2
(f ′η − f ) (9)

wheref ′ andθ are the dimensionless velocity and temp
ature respectively, andη is the similarity variable. Substi
tution in the governing equations (4), (5) gives rise to
following local similarity two-point boundary-value prob
lem
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ng
, and (d) the
Fig. 1. Schematic of the physical problem of moving surface from a slot: (a) the surface is moving upwards in thex direction and the buoyancy force assisti
the flow, (b) the same as but the buoyancy force opposing the flow, (c) the surface is moving downwards and the buoyancy force opposing the flow
same as (c) but the buoyancy force assisting the flow.
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f ′′′ − (θ − θr)

θr

ff ′′ − 1

(θ − θr)
θ ′f ′′ − 2λ(θ − θr)

θr

θ = 0

(10)

θ ′′ + Prf θ ′ = 0 (11)

The transformed Boundary conditions are

f ′(0) = 1, f (0) = 0, θ(0) = 1

f ′(∞) → 0, θ(∞) → 0 (12)

where,θr is a constant viscosity/temperature parameter
fined by

θr = Tr − T∞
Tw − T∞

= − 1

γ (Tw − T∞)
(13)

The last term in Eq. (10) is due to the buoyancy force
λ = SGrx/Re2

x which, serves as the buoyancy parame
andGrx = gβ(Tw − T∞)x3/ν2, whenS = 0 impliesλ = 0
that means the buoyancy forces are neglected and the
erning equations (10), (11) reduce to those of forced c
vection limit obtained by Pop et al. [29] (when the sa
definition of similarity variable is used) and by Elbashbes
and Bazid [30]. It should be mentioned that, whenγ = 0
then θr → ∞ and Eq. (10) reduces to those of const
viscosity of Sakiadis [4]. Furthermore, Eqs. (10), (11)
duce to Ali [10,19] for no buoyancy force and for Ali an
-

Al-Yousef [22–24] when the buoyancy force included.
should be noted thatλ is a function ofx and Eq. (10) con-
tains x, therefore the local similarity approach (Kays a
Crawford [35]) is applied to solve the governing Eqs. (1
(11). Furthermore, local similarity approach implied that
dimensionless quantities(Grx,Rex,Nux) are determined lo
cally at anyx-station and the upstream history of the flow
ignored, except as it influences the similarity variable.

Moreover, It can be shown [30] that for(Tw −T∞) > 0,θr

must physically be> 1 for gases and< 0 for liquids. How-
ever, the opposite is true if(Tw − T∞) < 0, whereθr must
physically be> 1 for liquids and< 0 for gases. Furthermore
Fig. 1 shows all physical considerations ofθr (Tw − T∞),
and λ when the vertical surface is moving either upwa
or downwards. It worth mentioning that, whenS = +1 and
Tw > T∞ (λ > 0) means that thex-axis points upwards in
the direction of stretching surface such that the stretch
induced flow and the thermal buoyant flow assist each o
(assisting flow, Fig. 1(a)). On the other hand, whenS = −1
and Tw > T∞ (λ < 0) means that thex-axis points verti-
cally downwards in the direction of stretching surface bu
this case the stretching induced flow and the thermal buo
flow oppose each other (opposing flow, Fig. 1(c)). Furth
more, the opposite is absolutely true ifTw < T∞, where the



M.E. Ali / International Journal of Thermal Sciences 45 (2006) 60–69 63

w,

d in

selt

10)
or-
he
di-

n

10)
ntil

e

are
ter-
lues
n-

een
vis-
l

nt

ts

ore

uld
rlier)
n-

n
10)
with
es in

ibed

ds
. 1.
files

loc-
ith
f-

er-
all

i-

s in
on-
ot
r is

ondi-
les

ary
is
r
re
rface
f
As
dary
(b)
b-

-
ds
for
first case isS = +1 (λ < 0) and thex-axis points upwards
(opposing flow, Fig. 1(b)) and the second case isS = −1
(λ > 0) and thex-axis points downwards (assisting flo
Fig. 1(d)).

The local shear stress at the surface can be expresse
dimensionless form of the skin friction coefficient as

Cf

√
Rex =

√
2θr

(θr − 1)
f ′′(0, θr ) (14)

and the local heat transfer coefficient in terms of Nus
number is expressed as

Nux√
Rex

= − 1√
2
θ ′(0, θr ) (15)

3. Numerical solution procedure

The coupled nonlinear ordinary differential equations (
and (11) are solved numerically by using the fourth
der Runge–Kutta method. Local similarity solutions of t
differential Eqs. (10), (11) subject to the boundary con
tions (12) were obtained for increasing values ofλ at each
constantθr . At each newθr we start from a known solutio
of the equations withλ = 0 (Pop et al. [29]) wheref ′′(0) and
θ ′(0) are known. For a given value ofλ the values off ′′(0)

andθ ′(0) were estimated and the differential equations (
and (11) were integrated using Runge–Kutta method u
the boundary conditions at infinityf ′(∞) and θ(∞) de-
cay exponentially to zero (� 10−4 where the solution to b
accepted and solutions withf ′(∞) andθ(∞) > 10−4 will
not be considered). If the boundary conditions at infinity
not satisfied then the numerical routine uses a half in
val method to calculate corrections to the estimated va
of f ′′(0) andθ ′(0). This process is repeated iteratively u
til exponentially decaying solution inf ′ andθ is obtained.
The value ofη∞ was chosen as large as possible betw
3.5 and 25 depending upon the Prandtl number and the
cosity/temperature parameterθr , without causing numerica

Table 1
Comparison off ′′(0) andθ ′(0) to previously published data atPr = 0.7
and λ = 0 for different values ofθr using the same expression ofη =
y
x Re1/2

x defined by [29] with rescaled Eqs. (10) and (11) to be consiste

θr Pop et al. [29] Present resul

−8.0 f ′′(0) −0.4773578 −0.4763230
θ ′(0) −0.3493189 −0.3432339

−0.1 f ′′(0) −1.5061732 −1.4965150
θ ′(0) −0.2191391 −0.1652394

−0.01 f ′′(0) −4.4856641 −4.4683560
θ ′(0) −0.1544918 −0.0561845

−0.001 f ′′(0) −14.0654213 −14.042370
θ ′(0) −0.1340890 −0.0179588

8.0 f ′′(0) −0.4089153 −0.4083475
θ ′(0) −0.3605226 −0.3555822
a

oscillations in the values off ′ and θ . The local solutions
were obtained for different values of−10 � θr � 10. It
should be noted that numerical solutions have become m
difficult to obtain asλ increases andλmax is the maximum
value ofλ which can be obtained (where the solution co
be obtained and satisfying the accuracies mentioned ea
at the correspondingθr andPr. Comparisons are made qua
titatively with Pop et al. [29] forλ = 0 in Table 1 in terms
of f ′′(0) andθ ′(0) for Pr = 0.7 (using the same expressio
of η defined by [29] with rescaled current equations (
and (11) to be consistent) which show good agreement
the present results. It should be noted that, the differenc
θ ′(0) at someθr appear in Table 1 is due to using largeη than
those mentioned in [29] such thatf ′(η) andθ(η) profiles go
asymptotically to zero.

4. Results and discussion

Eqs. (10) and (11) were solved numerically, as descr
in Section 3, for−10 � θr � 10, Pr = 0.72,3,7, and for
various values ofλ where the surface is moving upwar
or downwards corresponding to the matrix given in Fig
Samples of the resulting velocity and temperature pro
for Pr = 0.72 (air) and for different values ofθr and λ

are presented in Figs. 2 and 3. Fig. 2(a) shows the ve
ity profiles forθr < 0 where surface moves downwards w
Tw < T∞. As the magnitude ofθr decreases, where the e
fect of viscosity is significant, for large values ofλ (λ = 5)

results in a relative rise in the velocity profiles (velocity ov
shoot) near the wall. However, the opposite is true for sm
values ofλ (λ = 0.01 or 0). Fig. 2(b) shows the velocity var
ation for positive values ofθr and for different values ofλ
where the hot surface is moving upwards. In this figure a
Fig. 2(a) as|θr | increases the profiles approach to that of c
stant viscosity case and asλ increases the velocity oversho
near the wall. Furthermore, the velocity boundary laye
thicker for positive than for negativeθr . Fig. 3(a), (b) shows
the temperature profiles for the same parameters and c
tions mentioned in Fig. 2(a), (b). It is clear that these profi
are significantly influenced by the values ofθr andλ. The ef-
fect of variable viscosity is to thicken the thermal bound
layer forθr < 0 asθr approaches zero (Fig. 3(a)) while it
suppressed forθr > 1 asθr approaches unity (Fig. 3(b)) fo
small values ofλ. However, asλ increases these profiles a
almost squeezed together making the gradient at the su
insignificant with changingθr in other words, the effect o
viscosity change is overcome by the effect of buoyancy.
λ increases more, the relation between the thermal boun
layer andθr explained earlier is switched as seen in Fig. 3
for λ = 20. It worth mentioning that, similar results are o
tained for other Prandtl numbers.

Local distributions ofNuxRe−1/2
x at the surface for posi

tive and negativeθr (where the surface is moving upwar
and downwards respectively) are presented in Fig. 4
Pr = 0.72 and for different values ofλ. It should be men-
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Fig. 2. Samples of velocity profiles forPr = 0.72 and for different values
of θr showing the effect of variable viscosity for buoyancy assisting fl
(a) the surface is moving downwards as in Fig. 1(d), (b) the surface is m
ing upwards as in Fig. 1(a).

tioned that, for gases whereθr > 1 or θr < 0 corresponding
to either heat transfers from the surface to the medium o
opposite respectively. However, for liquids the opposite
true. For this Prandtl number there are no solutions obta
satisfying the governing equations and the boundary co
tions for 1.001> θr > −0.005, and this area is marked
Fig. 4 between the vertical dashed lines. It can be seen
this figure that, there is a competition between the buoya
force and the viscosity effect, i.e. forλ = 0 the effect of vari-
able viscosity model is significant in reducing or increas
NuxRe−0.5

x for negative or positiveθr respectively. Asλ in-
creases up to about 0.5 (θr < 0) or 1 (θr > 1) the two effects
are almost balanced andNuxRe−0.5

x is unaffected by the vari
(a)

(b)

Fig. 3. Samples of temperature profiles forPr = 0.72 and for different val-
ues ofθr showing the effect of variable viscosity for buoyancy assist
flow: (a) the surface is moving downwards as in Fig. 1(d), (b) the surfa
moving upwards as in Fig. 1(a).

ation of the fluid viscosity. It is observed that asλ increases
more forθr < 0 the local heat transfer is increased consid
ably asθr → 0 however, it is reduced asθr → 1 for θr > 1.
Furthermore, asθr → ±∞, NuxRe−0.5

x profiles asymptoti-
cally approach that of constant viscosity case (µ = const.
lines), which means that the variation of fluid viscosity
negligible.

Fig. 5 shows the Nusselt number distributions forPr =
0.72 for positive and negativeθr for the entire mixed convec
tion regime. As seen from the figure the buoyancy param
effect is significant asθr → 0 for θr < 0 where the Nusse
number profile is almost linear atθr = −0.01. It worth men-
tioning that, forλ > 0.5, the Nusselt number profiles switc
the order where the buoyancy effect dominates. The re
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Fig. 4. Local Nusselt number distributions forPr = 0.72 and for different
values ofλ for buoyancy assisting flow showing the region of no solutio

Fig. 5. Local Nusselt number distributions for the entire mixed convec
for 0 > θr > 1 andPr = 0.72. Dotted–dashed line presents the locus s
arating the natural convection dominant region on the right and the fo
convection region on the left for buoyancy assisting flow.

of predominate natural convection is determined by tak
5% increase in Nusselt number of that at forced convec
limit (λ = 0). The corresponding values ofλ (which we call
it critical valuesλ(crt)c are tabulated in Table 2 for eachθr

and for different Prandtl numbers. These critical values
presented as dotted–dashed line connecting the• symbols
for 1< θr < 0 and it should be reminded that there are no
lutions for 1> θr > 0. Therefore, the region on the right
this line presents the natural convection dominates whe
Fig. 6. Local Nusselt number distribution for the entire mixed convec
for θr < 0 for Pr = 3 and 7. Dotted–dashed lines present the locus s
rating the natural convection dominant region on the right and the fo
convection region on the left for buoyancy assisting flow.

Table 2
Critical values of buoyancy assisting flowλ(crt.)c for predominate natura

convection and the correspondingNuxRe−1/2
x for Pr = 0.72, 3, and 7 for

various values ofθr

θr Pr = 0.72 Pr = 3.0 Pr = 7.0

λ(crt.)c
Nux
Rex

λ(crt.)c
Nux√
Rex

λ(crt.)c
Nux√
Rex

10.0 0.10 0.38005 0.65 0.91496 1.65 1.46225
7.0 0.10 0.38153 0.68 0.91754 1.72 1.46490
4.0 0.11 0.38684 0.75 0.92335 1.91 1.47130
2.0 0.17 0.40311 1.04 0.93984 2.6 1.48800
1.1 0.46 0.43545 2.37 0.96999 5.8 1.51704

−0.01 1e−4 0.07782 12e−5 0.25104 8e−4 0.57482
−0.1 7e−4 0.17893 0.025 0.64895 0.12 1.18596
−0.5 0.014 0.29738 0.19 0.82576 0.54 1.36697
−1.0 0.03 0.33003 0.31 0.86345 0.75 1.40225
−4.0 0.061 0.36118 0.48 0.89603 1.25 1.44283
−7.0 0.07 0.36656 0.52 0.90138 1.35 1.44853

−10 0.075 0.36896 0.54 0.90373 1.40 1.45108

the region on the left presents the domain of forced con
tion.

Local Nusselt number distributions for different values
θr and forPr = 3,7 are shown in Fig. 6 where the surfa
is moving upwards. In this figure, it is cleat thatNuxRe−1/2

x

is independent ofλ in the forced convection domain on th
left of the dotted–dashed lines and it is a function ofθr only.
Furthermore, increasing Prandtl number enhances the
transfer coefficient for all values ofθr . The critical values of
predominate natural convection for both Prandtl numbers
tabulated in Table 2 as described earlier. It worth mention
that, the numerical solution forθr = −0.01 andPr = 7 can-
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Fig. 7. Local Nusselt number distribution for the entire mixed convection
all Pr = 0.72, 3 and 7. Dashed lines present the locus separating the n
convection dominant region on the right and the forced convection re
on the left for buoyancy opposing flow: (a) the surface is moving upw
as in Fig. 1(b), (b) the surface is moving downwards as in Fig. 1(c).

not be obtained for higher values ofλ since the solution ha
a lower accuracies and has been rejected.

In Figs. 4–6, the buoyancy effect is to assist the flow,
means thatNuxRe−0.5

x increases asλ increases according t
the matrix Fig. 1(a), (d). Comparisons ofNuxRe−0.5

x distrib-
utions at the surface for different Prandtl numbers where
buoyancy force opposing the flow, as sketched in Figs. 1
(c), are shown in Fig. 7(a), (b). In Fig. 7(a) the surface
moving upwards withTw < T∞ and in Fig. 7(b) the ho
surface is moving downwards. Dashed lines connecting
locus of predominate natural convection forPr = 3 and 7
whereas these critical values are tabulated in Table 3
Fig. 7(a), (b)NuxRe−0.5

x is reduced asθr → 0 for θr < 0
l

Fig. 8. Local skin friction coefficient profiles forPr = 0.72 and for different
values ofλ for buoyancy assisting flow showing the region of no solutio

Table 3
Critical values of buoyancy opposing flowλ(crt.)c for predominate natura

convection and the correspondingNuxRe−1/2
x for Pr = 3, and 7 for various

values ofθr

θr Pr = 3.0 Pr = 7.0

f ′′(0) λ(crt.)c
Nux√
Rex

f ′′(0) λ(crt.)c
Nux√
Rex

10.0 −0.9484367 −0.466 0.82769 −1.209322 −1.2 1.32345
7.0 −0.9214851 −0.48 0.83058 −1.183714 −1.25 1.32564
4.0 −0.8655953 −0.541 0.83592 −1.113357 −1.39 1.33146
2.0 −0.7056180 −0.75 0.84931 −0.9140071 −1.87 1.34565
1.1 −0.2153614 −1.6 0.87825 −0.2979634 −4.0 1.37223

−0.1 −2.373538 −0.0147 0.58593 −2.882698 −0.079 1.06949
−0.5 −1.552044 −0.131 0.74710 −1.953567 −0.385 1.23682
−1.0 −1.335320 −0.21 0.78046 −1.681409 −0.58 1.27328
−4.0 −1.103024 −0.345 0.81065 −1.390445 −0.9 1.30630
−7.0 −1.059178 −0.375 0.81574 −1.344756 −0.983 1.31078

−10 −1.042438 −0.39 0.81760 −1.325513 −1.02 1.31260

but increased asθr → 1 for θr > 1. It should be mentione
that for Pr = 0.72 forced convection dominates since th
are no solutions obtained by the present method for na
convection dominates.

Now turning our attentions to the effect of viscosity te
perature dependent on skin friction coefficient at the sur
presented byCf Re0.5 for Pr = 0.72 as shown in Fig. 8 fo
the same parameters used in Fig. 4. Therefore, the co
tition between the buoyancy force and the viscosity te
perature dependent forλ = 0 tends to increase or decrea
Cf Re0.5 for negative or positiveθr respectively. Asλ in-
creases up to about 0.5(θr < 0) or 1 (θr > 1) the two ef-
fects are almost balanced andCf Re0.5 is unaffected by the
variation of the fluid viscosity. In addition, asλ increases
more forθr < 0, the local skin friction coefficient is reduce
considerably asθr → 0 due to a decrease in the fluid vi
cosity whereµ → 0. On the other hand, it is increased
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Fig. 9. The effect of buoyancy assisting and opposing flow on the dim
sionless skin friction coefficient distributions at the surface forPr = 0.72
for different values ofλr . Line connecting• symbols indicates the predom
inate buoyancy assisting and opposing flow.

Table 4
Critical values ofλ(crt.)s for predominate buoyancy assisting shear str

at the surface and the correspondingCf Re0.5 for Pr = 0.72, 3, and 7.0 for
various values ofθr

θr Pr = 0.72 Pr = 3.0 Pr = 7.0

λ(crt.)s Cf Re0.5 λ(crt.)s Cf Re0.5 λ(crt.)s Cf Re0.5

10.0 0.018 −0.88053 0.039 −0.86765 0.058 −0.86153
7.0 0.0195 −0.89342 0.40 −0.87771 0.059 −0.86911
4.0 0.021 −0.93419 0.41 −0.90603 0.06 −0.88983
2.0 0.022 −1.05793 0.0428 −0.98099 0.062 −0.94272
1.1 0.0275 −1.36130 0.048 −1.13574 0.073 −1.03924

−0.01 0.002 −0.08358 0.003 −0.08496 0.006 −0.08526
−0.1 0.005 −0.25914 0.015 −0.27270 0.025 −0.30040
−0.5 0.0115 −0.50789 0.028 −0.55448 0.045 −0.59879
−1.0 0.014 −0.62222 0.035 −0.66183 0.05 −0.69879
−4.0 0.017 −0.77094 0.037 −0.78877 0.055 −0.80173
−7.0 0.018 −0.79922 0.038 −0.81071 0.056 −0.81896

−10.0 0.018 −0.81224 0.038 −0.82034 0.057 −0.82560

θr → 1 for θr > 1 due to an increase in the fluid visco
ity whereµ → ∞. A further increase in the fluid viscosit
(θr < 1) will result in an adverse pressure gradient sincef ′
will approach a constant value of 1 as approximately see
Fig. 2(b) forθr = 1.001. Therefore, separation of flow w
occur and the boundary layer assumptions fails and the
similarity solutions no longer exist which ensures that th
is no solution for 0� θr � 1 as seen in Figs. 4 and 8 (s
[19,32,35,36] for similar cases). Furthermore, asθr → ±∞,
Cf Re0.5 profiles asymptotically approach that of const
viscosity case (µ = const. lines), which means that the va
ation of fluid viscosity is negligible.

Fig. 9 presents theCf Re0.5 profiles forPr = 0.72 where
the buoyancy assisting or opposing the flow for nega
and positiveθr , respectively. A 5% increase or decrease
l

(a)

(b)

Fig. 10. Dimensionless skin friction coefficient distributions at the surf
for Pr = 3 and 7: (a) buoyancy assisting flow, (b) buoyancy opposing fl

Cf Re0.5 atλ = 0 (Forced convection only) has been appl
to see the effect of buoyancy. The solid line connectin•
symbols present those values of 5% increase or decr
The predominate buoyancy effect region on the shear s
is on the right of this line. The numerical values ofλ which
we call it λ(crt.)s corresponding to these points are given
Tables 4 and 5 for buoyancy assisting and opposing
respectively for different parameters. Similar profiles are
tained forPr = 3 and 7 in Fig. 10(a), (b) for buoyancy assi
ing and opposing flow, respectively. The critical predomin
values are tabulated in Tables 4 and 5.

5. Conclusions

The results show that as|θr | decreases (for fixedλ) the
hydrodynamic boundary layer thickness decreases how
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Table 5
Critical values ofλ(crt.)s for predominate buoyancy opposing shear str

at the surface and the correspondingCf Re0.5 for Pr = 0.72, 3, and 7.0 for
various values ofθr

θr Pr = 0.72 Pr = 3.0 Pr = 7.0

λ(crt.)s Cf Re0.5 λ(crt.)s Cf Re0.5 λ(crt.)s Cf Re0.5

10.0 −0.019 −0.97022−0.0391 −0.95844 −0.0582 −0.95192
7.0 −0.0191 −0.98723−0.0395 −0.97039 −0.0585 −0.96074
4.0 −0.0199 −1.03424−0.040 −1.00109 −0.0593 −0.98349
2.0 −0.022 −1.16805−0.0425 −1.08337 −0.062 −1.04169
1.1 −0.027 −1.50561−0.044 −1.25262 −0.67 −1.15446

−0.1 − − −0.0125 −0.30244 −0.024 −0.33211
−0.5 − − −0.027 −0.61285 −0.044 −0.66205
−1.0 − − −0.032 −0.73517 −0.05 −0.77249
−4.0 −0.0168 −0.85176−0.0354 −0.87212 −0.055 −0.88559
−7.0 −0.017 −0.88313−0.0372 −0.89669 −0.056 −0.90485

−10.0 −0.0175 −0.89758−0.0375 −0.90692 −0.056 −0.91252

the thermal boundary layers (TBL) thickness increase be
λ reaches a specific value and after that the TBL decre
The NuxRe−1/2

x is highly affected by the variable visco
ity model for small values of|θr |. However, for large|θr |
the magnitude ofNuxRe−1/2

x is independent of it and ap
proaches its value at constant viscosity model correspon
to Pr andλ. On the other hand, increasingλ (for fixed |θr |)
enhances the heat transfer coefficient for all Prandtl n
bers. However, at a specific value ofλ, where the competi
tion between the effect of variable viscosity and buoya
is balanced, theNuxRe−1/2

x is almost independent of|θr |.
Otherwise, these profiles depend onθr in the forced convec
tion region and onθr andλ in the natural convection region
Critical values of buoyancy assisting and opposing flow
obtained for predominate natural convection flow usingθr

as a parameter. Introducing the variable viscosity effect
largeλ reduces the shear stress at the surface forθr < 0 as
θr tends to zero. However, at smallλ the effect of variable
viscosity is to increase the shear stress for assisting
Finally critical values ofλ, corresponding to predomina
buoyancy assisting and opposing effect on the dimens
less shear stress, are tabulated for different Prandtl nu
and viscosity/temperature parameterθr .
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