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Abstract

The effect of temperature dependent viscosity on laminar mixed convection boundary layer flow and heat transfer on a continuously moving
vertical surface is studied. The fluid viscosity is assumed to vary as an inverse linear function of temperature. Local similarity solutions are
obtained for the boundary layer equations subject to isothermally moving vertical surface with uniform speed. The effect of various governing
parameters, such as Prandtl numBerthe mixed convection parameter= S Gr, /Re;, and the viscosity/temperature paraméewhich
determine the velocity and temperature distributions, the local heat transfer coefficient, and the local shear stress coefficient at the surface a
studied. Significant changes are obtained in dimensionless local heat transfer and shear stress coefficient at the surface when the magnitt
of 6, has small values for each Critical values of. are obtained for predominate natural convection and buoyancy shear stress for assisting
and opposing flow for various..

0 2005 Elsevier SAS. All rights reserved.
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1. Introduction ject to uniform wall temperature and heat flux and the more
general case using a power law velocity and temperature dis-

Continuously moving surface through an otherwise qui- tribution at the surface was studied by Ali [19]. Magyari et

escent medium has many applications in manufacturing al. [20] have reported analytical and computational solutions

processes. Such processes are hot rolling, wire drawing,when the surface moves with rapidly decreasing velocities

spinning of filaments, metal extrusion, crystal growing, con- Using the self-similar method.

tinuous casting, glass fiber production, and paper produc- !N all papers cited earlier the effect of buoyancy force

tion [1-3]. was relaxed and the following papers have taken it into con-
Since the pioneer study of Sakiadis [4] who developed sideration. Such papers are those of Lin et al. [21], Ali and

a numerical solution for the boundary layer flow field of a Al-Yousef [22-24], Chen [25,26], and by Ali [27].

stretched surface, many authors have attacked this problem 10 date, researchers have only considered the effect of

to study the hydrodynamic and thermal boundary layers due constant viscosity on boundary layer developed by a contin-
to a moving surface [5-14]. uously moving surface. However, it is known that the fluid

Suction or injection of a stretched surface was introduced ViSCOSity changes with temperature [28] for example the ab-
by Erickson et al. [15] and Fox et al. [16] for uniform surface solute V'S,COS'ty of water decreases by 240% when the tem-
velocity and temperature and by Gupta and Gupta [17] for perature increases from 1Q to 50°C: Furthermore, Pqp et
linearly moving surface. Chen and Char [18] have studied al. [29], a”?' Elbas_hbes_hy and Ba2|d_ [30] _have St.Ud'ed. the
the suction and injection on a linearly moving plate sub- effect of variable viscosity using the similarity solution with

no buoyancy force.

Therefore, in order to get more accurate information

E-mail address: mali@ksu.edu.sa (M.E. Ali). about the flow and temperature profiles the present paper in-
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Nomenclature

a constant Greek symbols

f dimensionless stream function o thermal diffusivity

Gr,  Grashof numbe(gf (T, — Too)x3/v? B thermal expansion coefficient

k thermal conductivity y constant

Nu, Nusselt numbe¢hx/ k) n similarity variable

Pr Prandtl numbetv/«) 0 dimensionless temperature

Re, Reynolds numbefU,,x /veo) O, dimensionless reference temperature

S dummy parameter A buoyancy parametés Gr . /Re?)

T temperature “ a..bSO|Ute- ViS-COSit.y

T, viscosity reference temperature v kinematic viscosity

u velocity component in-direction P density

v velocity component iny-direction Subscripts

x coordinate in direction of surface motion w condition at the surface

y coordinate in direction normal to surface motion condition at ambient medium
vestigates the effect of viscosity variation with temperature ou + 9 -0 ©)
on mixed convection boundary layer adjacent to a contin- dx  dy
uously moving vertical surface. However, the analyses are du ou 1 9 ou
focused on the case of uniformly moving isothermal surface “3; Yoy SgB(T — Teo) + o Oy (M@) (4)
for different Prandtl numbers corresponding to water and air oT oT 927
using the local similarity approach. u—  —a— (5)

The mathematical formulation of the problem is pre- 0¥  dy  3y?
sented in Section 2, followed by numerical solution proce- sypject to the following boundary conditions:
dure in Section 3. Results and discussion are presented in
Section 4, and finally conclusions are given in Section 5. u=Uy, v=0 @y=0

T=T, @y=0
u— 0, T—>Tw @y— o0 (6)

2. Mathematical analysis
Thex coordinate is measured along the moving surface from

Consider the laminar steady two-dimensional motions of the point where the surface originates, and theordinate
mixed convection boundary layer flow due to a vertically is measured normal to it (Fig. 1). Where,and v are the
moving isothermal surface. Using Boussinesq approxima- velocity components in- andy-directions respectively and
tion for incompressible viscous fluid environment in addi- S is a dummy parameter stands for1, or —1. Using the
tion to that, the fluid viscosity is assumed to vary as an stream functiony and the following transformation:
inverse linear function of temperature (Ling and Dybbs [31],

and Lai and Kulacki [32]): ¥ =vV2uRE2F(), = —_ReM? @)
11 1 2
—=—"—[1+yT-Tx)], or ==a(T-T,) (1) (T — Too)
K Moo 2 0 = —— (8)
(Tw - Too)
where
1 where

a=-"" and T, =Ty — — (2 ) U x

o 7 u="Re f'(n). Rey=-""
are constants, and their values depend on the reference state  * Voo
of the fluid. In general, it can be seen that for liquids and Voo REY? )
gases a is- 0 and< 0, respectively [31]. It should be men- V= xiﬁ(f n—1r 9)

tioned that the above model has used by Hossain et al. [33]

and Hossain and Munir [34] in studying natural convection where f” andé are the dimensionless velocity and temper-

from a vertical wavy cone and the mixed convection from a ature respectively, ang is the similarity variable. Substi-

vertical flat plate respectively. tution in the governing equations (4), (5) gives rise to the
The equations governing this convective variable viscos- following local similarity two-point boundary-value prob-

ity fluid flow are lem
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Fig. 1. Schematic of the physical problem of moving surface from a slot: (a) the surface is moving upwardsdiréeon and the buoyancy force assisting
the flow, (b) the same as but the buoyancy force opposing the flow, (c) the surface is moving downwards and the buoyancy force opposing the flow, and (d) th
same as (c) but the buoyancy force assisting the flow.

- ® _er)ff// _ 1 o' " — wg =0 Al-Yousef [22—-24] when the buoyancy force included. It
Or 0 —6) Or should be noted that is a function ofx and Eq. (10) con-

(10) tains x, therefore the local similarity approach (Kays and

0" +Prfo’'=0 (11) Crawford [35]) is applied to solve the governing Egs. (10),

(11). Furthermore, local similarity approach implied that the
dimensionless quantiti€&r ., Re,, Nu, ) are determined lo-
=1, f(©) =0, 00 =1 cally at anyx-station and the upstream history of the flow is
f'(00) = 0, 0(c0) — 0 (12) ignored, except as it influences the similarity variable.
. . . _ Moreover, It can be shown [30] that f¢F,, — To) > 0,6,
}/iv:ee(;et;ir is a constant viscosity/temperature parameter de must physically be- 1 for gases and: 0 for liquids. How-
ever, the opposite is true {fl, — Tx) < 0, whered, must
— Ir —Too - _ 1 (13) physically be> 1 for liquids and< O for gases. Furthermore,
Ty — Teo YTy — Teo) Fig. 1 shows all physical considerations®f (T, — Tso),
The last term in Eq. (10) is due to the buoyancy force and and A when the vertical surface is moving either upwards
A = SGr, /Re? which, serves as the buoyancy parameter or downwards. It worth mentioning that, whén= +1 and
andGry = gB(Tw — Tso)x3/v2, whenS = 0 impliesi = 0 Ty > Tso (L > 0) means that the-axis points upwards in
that means the buoyancy forces are neglected and the govthe direction of stretching surface such that the stretching
erning equations (10), (11) reduce to those of forced con- induced flow and the thermal buoyant flow assist each other
vection limit obtained by Pop et al. [29] (when the same (assisting flow, Fig. 1(a)). On the other hand, wifes —1
definition of similarity variable is used) and by Elbashbeshy and T,, > To, ( < 0) means that the-axis points verti-
and Bazid [30]. It should be mentioned that, when= 0 cally downwards in the direction of stretching surface but in
then 6, — oo and Eg. (10) reduces to those of constant this case the stretching induced flow and the thermal buoyant
viscosity of Sakiadis [4]. Furthermore, Egs. (10), (11) re- flow oppose each other (opposing flow, Fig. 1(c)). Further-
duce to Ali [10,19] for no buoyancy force and for Ali and more, the opposite is absolutely truefif < T, where the

The transformed Boundary conditions are

6,
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first case isS = +1 (A < 0) and thex-axis points upwards  oscillations in the values of’ and 6. The local solutions

(opposing flow, Fig. 1(b)) and the second cas&is —1 were obtained for different values 610 < 6, < 10. It
(A > 0) and thex-axis points downwards (assisting flow, should be noted that numerical solutions have become more
Fig. 1(d)). difficult to obtain as\ increases an@max is the maximum
The local shear stress at the surface can be expressed in salue ofA which can be obtained (where the solution could
dimensionless form of the skin friction coefficient as be obtained and satisfying the accuracies mentioned earlier)
V2, at the corresponding; andPr. Comparisons are made quan-
CrvRe, = ] (0, 6,) (14) titatively with Pop et al. [29] forx = 0 in Table 1 in terms
6 =1 of f”(0) and®’(0) for Pr = 0.7 (using the same expression
and the local heat transfer coefficient in terms of Nusselt of 5 defined by [29] with rescaled current equations (10)
number is expressed as and (11) to be consistent) which show good agreement with
NU, 0.0 15 trje present results. It should be noted that, the differences in
NS (0.6,) (15) 6’ (0) at some, appear in Table 1 is due to using largthan

those mentioned in [29] such th#t(n) andd (i) profiles go
asymptotically to zero.

3. Numerical solution procedure

4. Resultsand discussion
The coupled nonlinear ordinary differential equations (10)

and (11) are solved numerically by using the fourth or-  Eqs. (10) and (11) were solved numerically, as described
der Runge—Kutta method. Local similarity solutions of the iy Section 3, for—10< 6, < 10, Pr = 0.72,3,7, and for
differential Egs. (10), (11) subject to the boundary condi- various values of. where the surface is moving upwards
tions (12) were obtained for increasing valuesiodt each  or downwards corresponding to the matrix given in Fig. 1.
constant,. At each news, we start from a known solution  samples of the resulting velocity and temperature profiles
of the equations with = 0 (Pop et al. [29]) wher¢"' (0) and for Pr = 0.72 (air) and for different values of, and A
6'(0) are known. For a given value afthe values off"”(0) are presented in Figs. 2 and 3. Fig. 2(a) shows the veloc-
ande’(0) were estimated and the differential equations (10) ity profiles foré, < 0 where surface moves downwards with
and (11) were integrated using Runge—Kutta method until T, < T~. As the magnitude of, decreases, where the ef-

the boundary conditions at inﬁ”it)”(oo) andf(oo) de-  fect of viscosity is significant, for large values of(x = 5)
cay exponentially to zero 10~ where the 50|Ut'0‘? tobe  resultsin arelative rise in the velocity profiles (velocity over-
accepted and solutions witfi' (c0) andé (oco) > 10~ will shoot) near the wall. However, the opposite is true for small

not be considered). If the boundary conditions at infinity are vajues of. (1 = 0.01 or 0). Fig. 2(b) shows the velocity vari-
not satisfied then the numerical routine uses a half inter- ation for positive values (ﬁr and for different values of
val method to calculate corrections to the estimated valueswhere the hot surface is moving upwards. In this figure as in
of f”(0) and®’(0). This process is repeated iteratively un- Fig. 2(a) ag6, | increases the profiles approach to that of con-
til exponentially decaying solution iff” andé is obtained.  stant viscosity case and asncreases the velocity overshoot
The value ofy., was chosen as large as possible between near the wall. Furthermore, the velocity boundary layer is
3.5 and 25 depending upon the Prandtl number and the vis-thicker for positive than for negativi. Fig. 3(a), (b) shows
cosity/temperature parametgr, without causing numerical  the temperature profiles for the same parameters and condi-
tions mentioned in Fig. 2(a), (b). Itis clear that these profiles
Table 1 are significantly influenced by the valuesspfandi. The ef-
Comparison off”(0) and¢’(0) to previously published data & = 0.7 fect of variable viscosity is to thicken the thermal boundary
gnd %/2: 0 for different values o®, using the same expression pf= Iayer forg, < 0 asé, approaches zero (Fig. 3(a)) while it is
%Rex defined by [29] with rescaled Egs. (10) and (11) to be consistent Suppressed fo, > 1 asé, approaches unity (Fig. 3(b)) for

6r Pop etal. [29] Presentresults  small values of.. However, as. increases these profiles are
—-8.0 70 —0.4773578 —0.4763230 almost squeezed together making the gradient at the surface
0'(0) —0.3493189 —0.3432339 insignificant with changing, in other words, the effect of
—01 £(0) 15061732 _1.4965150 viscosity change is overcome by the effect of buoyancy. As
6'(0) —-0.2191391 —0.1652394 A increases more, the relation between the thermal boundary
_001 77(0) _4.4856641 _4.4683560 layer andb, explained ear_her_ is swﬂchgd as seenin Fig. 3(b)
6'(0) —0.1544918 —0.0561845 for A = 20. It worth mentioning that, similar results are ob-
0001 0 140654213 14042370 tained for other Prandtl numberﬁ,é
o' (0) ~0.1340890 Z0.0179588 ; Loczl dlstrl?ugons ofNu,Re, 7~ at thg surfage for posi-
r
60 "o 04089153 04083 ive and negative, (where the surface is moving upwards
- f7(0) —0.408915 —0.4083475 . . .
00 03605226 03555822 and downwards respectively) are presented in Fig. 4 for

Pr = 0.72 and for different values of. It should be men-
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Fig. 3. Samples of temperature profiles Rir= 0.72 and for different val-
Fig. 2. Samples of velocity profiles fér = 0.72 and for different values

ues off, showing the effect of variable viscosity for buoyancy assisting
of 6, showing the effect of variable viscosity for buoyancy assisting flow:

flow: (a) the surface is moving downwards as in Fig. 1(d), (b) the surface is
(a) the surface is moving downwards as in Fig. 1(d), (b) the surface is mov- moving upwards as in Fig. 1(a).

ing upwards as in Fig. 1(a).

ation of the fluid viscosity. It is observed that agncreases
tioned that, for gases wheég > 1 or6, < 0 corresponding  more forf, < 0 the local heat transfer is increased consider-
to either heat transfers from the surface to the medium or theably asf, — 0 however, it is reduced & — 1 for 6, > 1.
opposite respectively. However, for liquids the opposite is Furthermore, ag, — +oo, NuxRe;°-5 profiles asymptoti-
true. For this Prandtl number there are no solutions obtainedcally approach that of constant viscosity cage=f const
satisfying the governing equations and the boundary condi- lines), which means that the variation of fluid viscosity is
tions for 1001 > 6, > —0.005, and this area is marked in negligible.

Fig. 4 between the vertical dashed lines. It can be seen from Fig. 5 shows the Nusselt number distributions Ror=

this figure that, there is a competition between the buoyancy 0.72 for positive and negativ& for the entire mixed convec-
force and the viscosity effect, i.e. far= 0 the effect of vari- tion regime. As seen from the figure the buoyancy parameter
able viscosity model is significant in reducing or increasing effect is significant ag, — 0 for 6, < 0 where the Nusselt
Nu, Re;0-5 for negative or positive, respectively. As\ in- number profile is almost linear 8t = —0.01. It worth men-
creases up to about 0.8.(< 0) or 1 ¢, > 1) the two effects tioning that, ford > 0.5, the Nusselt number profiles switch
are almost balanced al, Re;0~5 is unaffected by the vari-  the order where the buoyancy effect dominates. The region
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Fig. 6. Local Nusselt number distribution for the entire mixed convection
for 6, < 0 for Pr = 3 and 7. Dotted—dashed lines present the locus sepa-
rating the natural convection dominant region on the right and the forced
convection region on the left for buoyancy assisting flow.
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Table 2
4F === -AtA-----CezF | Critical values of buoyancy assisting flowt ). for predominate natural
Iy i, e convection and the (:orrespondihtglxRe;l/2 for Pr=0.72, 3, and 7 for
3 X, various values of)
&J Oy Pr=0.72 Pr=3.0 Pr=7.0
X Nu Nu Nuy
é, Aert)e  Rey Aete  Res Aete  JRrer

100 0.10 038005 065 091496 1.65 16225
7.0 0.10 038153 068 091754 1.72 146490
4.0 0.11 038684 075 092335 1.91 17130

20 017 040311 104 093984 2.6 148800
T 11 0.6 043545 237 096999 5.8 151704
4L . T & —0.01 1e-4 007782 12e5 025104 8e4 057482
0.1 -4 r <% | —-01 7e-4 017893 0025 064895 0.12 18596
9 h v w . —-05 0.014 029738 019 082576 0.54 136697
|

vl Co vl ol

- - P R -10 0.03 033003 031 086345 0.75 40225
1E-4 1E-3 1E-2 1E-1 1E+0 1E+1 —40 0.061 036118 048 089603 1.25 44283
-70 0.07 036656 052 090138 1.35 44853
-10 0.075 036896 054 090373 1.40 15108

Fig. 5. Local Nusselt number distributions for the entire mixed convection
for 0> 6, > 1 andPr = 0.72. Dotted—dashed line presents the locus sep-

arating the natural convection dominant region on the right and the forced the region on the left presents the domain of forced convec-
convection region on the left for buoyancy assisting flow. tion

Local Nusselt number distributions for different values of
of predominate natural convection is determined by taking 6, and forPr = 3,7 are shown in Fig. 6 where the surface

5% increase in Nusselt number of that at forced convection is moving upwards. In this figure, it is cleat tH\&lmee;l/2
limit (A = 0). The corresponding values bf(which we call is independent of in the forced convection domain on the
it critical valuesi . are tabulated in Table 2 for eaéh left of the dotted—dashed lines and it is a functiom,0bnly.

and for different Prandtl numbers. These critical values are Furthermore, increasing Prandtl number enhances the heat
presented as dotted—dashed line connectingstigmbols transfer coefficient for all values éf. The critical values of

for 1 < 6, < 0anditshould be reminded that there are no so- predominate natural convection for both Prandtl numbers are
lutions for 1> 6, > 0. Therefore, the region on the right of tabulated in Table 2 as described earlier. It worth mentioning
this line presents the natural convection dominates whereaghat, the numerical solution f&. = —0.01 andPr = 7 can-
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Pr=7 Table 3
121 r= -0.1 Critical values of buoyancy opposing flowct ). for predominate natural
\‘\ | convection and the correspondiNg, Re;l/2 for Pr =3, and 7 for various
9 1 values oft,
S -
'Y -10
X o8 N 05 | Or Pr=30 Pr=70
> . Nu, Nu
z Pr=3 4 .- O hoe  Jre SO Mere  Jre
ﬂ 4
10.0 —0.9484367 —0.466 Q082769 —1.209322 —-1.2 132345
11 7.0 —0.9214851 -0.48 083058 —1.183714 —1.25 132564
044 10 b 4.0 —0.8655953 -0.541 083592 —1.113357 —1.39 133146
2.0 —0.7056180 —0.75 084931 —0.9140071 —1.87 134565
aAr 1.1 —0.2153614 -1.6 0.87825 —0.2979634 —4.0 137223
l —0.1 —2.373538 —0.0147 058593 —2.882698 —0.079 106949
0.0 L e e e A m s —0.5 —1.552044 —-0.131 Q74710 —1.953567 —0.385 123682
1E-4 1E-3 1E-2 1E-1 1E+0 1E+1 —1.0 —1.335320 —0.21 078046 —1.681409 —-0.58 127328
_7\’ —4.0 —1.103024 —-0.345 (081065 —1.390445 -0.9 130630
—7.0 —1.059178 —-0.375 081574 —1.344756 —0.983 131078
() ~10 -1042438 —039 081760 —1.325513 —1.02 131260

Fig. 7. Local Nusselt number distribution for the entire mixed convection for

all Pr =0.72, 3and 7. Dashed lines present the locus separating the natural . .
convection dominant region on the right and the forced convection region but increased ag. — 1 for 6, > 1. It should be mentioned
on the left for buoyancy opposing flow: (a) the surface is moving upwards that for Pr = 0.72 forced convection dominates since there

asin Fig. 1(b), (b) the surface is moving downwards as in Fig. 1(c). are no solutions obtained by the present method for natural
convection dominates.

not be obtained for higher values bfince the solution has Now turning our attentions to the effect of viscosity tem-

a lower accuracies and has been rejected. perature dependent on skin friction coefficient at the surface

In Figs. 4-6, the buoyancy effect is to assist the flow, this presented by sRe®® for Pr = 0.72 as shown in Fig. 8 for
means thaNu, Re; % increases as increases according to  the same parameters used in Fig. 4. Therefore, the compe-
the matrix Fig. 1(a), (d). Comparisons i, Re;0~5 distrib- tition between the buoyancy force and the viscosity tem-
utions at the surface for different Prandtl numbers where the perature dependent far= 0 tends to increase or decrease
buoyancy force opposing the flow, as sketched in Figs. 1(b), C fRe0<5 for negative or positived, respectively. Ask in-

(c), are shown in Fig. 7(a), (b). In Fig. 7(a) the surface is creases up to about 0B, < 0) or 1 (6, > 1) the two ef-
moving upwards withT,, < T and in Fig. 7(b) the hot fects are almost balanced a(fg}ReO-5 is unaffected by the
surface is moving downwards. Dashed lines connecting thevariation of the fluid viscosity. In addition, as increases
locus of predominate natural convection fr = 3 and 7 more ford, < 0, the local skin friction coefficient is reduced
whereas these critical values are tabulated in Table 3. Inconsiderably a®, — 0 due to a decrease in the fluid vis-
Fig. 7(a), (b)NuxRe;O-5 is reduced a®, — 0 for 6, <O cosity whereuw — 0. On the other hand, it is increased as
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sionless skin friction coefficient distributions at the surfaceRoe= 0.72 0
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inate buoyancy assisting and opposing flow. = _r _______
Table 4 o 2T
Critical values ofx (), for predominate buoyancy assisting shear stress dmx
at the surface and the correspondifigRe®® for Pr = 0.72, 3, and 7.0 for 14
various values of, Z._)><
Or Pr=0.72 Pr=3.0 Pr=7.0 4
Aertys Cr Re0S Acrt)s CfReO‘5 Aert)s C.)‘Reo'5
100 0018 -0.88053 0039 -0.86765 0058 —0.86153
7.0 0.0195 —-0.89342 040 —0.87771 0059 -0.86911
40 0021 -093419 041 -090603 006 —0.88983 6l
2.0 0022 —1.05793 00428 —0.98099 0062 —0.94272 ) T
1.1 00275 —-1.36130 0048 -—1.13574 0073 -1.03924 AL
—0.01 0002 -0.08358 0003 —0.08496 0006 —0.08526 e
—01 0005 -0.25914 0015 —0.27270 0025 —0.30040 0.001 0.010
—-0.5 0.0115 —-0.50789 0028 —0.55448 0045 —-0.59879
—10 0014 -—0.62222 0035 -0.66183 005 —0.69879 (b)

—-4.0 0017 -0.77094 0037 -—-0.78877 0055 —-0.80173 . . . o . o
_70 0018 -0.79922 0038 -081071 0056 —0.81896 Fig. 10. Dimensionless skin friction coefficient distributions at the surface

_100 0018 —081224 0038 —0.82034 0057 —0.82560 for Pr =3 and 7: (a) buoyancy assisting flow, (b) buoyancy opposing flow.

Cr Re"5 at ) = 0 (Forced convection only) has been applied

6, — 1 for 6, > 1 due to an increase in the fluid viscos- t0 see the effect of buoyancy. The solid line conneciing
ity where u — oo. A further increase in the fluid viscosity ~Symbols present those values of 5% increase or decrease.
(6, < 1) will result in an adverse pressure gradient sirfi¢e The predominate buoyancy effect region on the shear stress
will approach a constant value of 1 as approximately seen in is on the right of this line. The numerical values)ofvhich
Fig. 2(b) for6, = 1.001. Therefore, separation of flow will We call it Acrt)s corresponding to these points are given in
occur and the boundary layer assumptions fails and the localTables 4 and 5 for buoyancy assisting and opposing flow
similarity solutions no longer exist which ensures that there réspectively for different parameters. Similar profiles are ob-
is no solution for 0< 6, < 1 as seen in Figs. 4 and 8 (see tainedforPr =3and 7 in Fig. 10(a), (b) for buoyancy assist-
[19,32,35,36] for similar cases). Furthermoregass +oo, ing and opposing flow, respectively. The critical predominate
C;Re5 profiles asymptotically approach that of constant values are tabulated in Tables 4 and 5.
viscosity caseyf = const. lines), which means that the vari-
ation of fluid viscosity is negligible. 5. Conclusions

Fig. 9 presents the'; Re®3 profiles forPr = 0.72 where
the buoyancy assisting or opposing the flow for negative  The results show that d8,| decreases (for fixed) the
and positived,, respectively. A 5% increase or decrease in hydrodynamic boundary layer thickness decreases however,
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Table 5 [4] B.C. Sakiadis, Boundary layer behavior on continuous solid surfaces:
Critical values ofi(crt)s for predominate buoyancy opposing shear stress I. Boundary-layer equations for two-dimensional and axisymmetric
at the surface and the correspondnge°-5 for Pr =0.72, 3, and 7.0 for flow, AIChE J. 7 (1) (1961) 26-28.
various values of)- ' [5] F.K. Tsou, E.M. Sparrow, R.J. Goldstein, Flow and heat transfer in the
Pr—0.72 Pr—30 Pr_70 boundary layer on a continuous moving surface, Internat. J. Heat Mass
Or r=>0 r=3 r=7. Transfer 10 (1967) 219—235.
Aert)s CfReO'S Aert)s CfReo'5 Aert)s CfReo'5 [6] L.J. Crane, Flow past a stretching plane, Z. Angew. Math. Phys. 21
100 —0.019 —0.97022-0.0391 —0.95844 —0.0582 —0.95192 (1970) 645-647. o _
7.0 —0.0191 —0.98723-0.0395 —0.97039 —0.0585 —0.96074 [7] L.G. Grubka, K.M. Bobba, Heat transfer characteristics of a continu-
40 —0.0199 —1.03424-0.040 —1.00109 —0.0593 —0.98349 ous stretching surface with variable temperature, ASME J. Heat Trans-
20 —0.022 —116805—0.0425 —1.08337 —0.062 —1.04169 fer 107 (1985) 248-250. ‘
11 —0027 —150561-0044 —1.25262 —0.67 —1.15446 [8] V.M. Soundalgekar, T.V. Ramana Murty, Heat transfer past a contin-
01 -— _ —0.0125 —0.30244 —0.024 —0.33211 uous moving plate with variable temperature, Warme- und Stoffiiber-
-05 - - —0.027 —-0.61285 —0.044 —0.66205 tragung 14 (1980) 91-93. _ _
10 -— _ —0032 -—0.73517 —0.05 —0.77249 [9] J. Vleggaar, Laminar boundary layer behavior on continuous acceler-
—40 —0.0168 —0.85176—0.0354 —0.87212 —0.055 —0.88559 ating surfaces, Chem. Engrg. Sci. 32 (1977) 1517-1525.
_70 —0017 -0.88313-0.0372 —0.89669 —0.056 —0.90485 [10] M.E. Ali, Heat transfer characteristics of a continuous stretching sur-
—100 —0.0175 —0.89758—0.0375 —0.90692 —0.056 —0.91252 face, Warme- und Stofftibertragung 29 (1994) 227-234.

[11] W.H.H. Banks, Similarity solutions of the boundary-layer equations
for a stretching wall, J. Mec. Theor. Appl. 2 (1983) 375-392.
the thermal boundary Iayers (TBL) thickness increase before[12] M.E. Ali, The effect of suction or injection on the laminar boundary

. layer development over a stretched surface, J. King Saud University
A reaches ?lfzpecmc value and after that the TBL decrease. Eng. Sci. 8 (1) (1996) 43_58.

The Nu,Re, is highly affected by the variable viscos- [13] E. Magyari, B. Keller, Heat and mass transfer in the boundary layers
ity model for small values ofo,|. However, for largg6; | on an exponentially stretching continuous surface, J. Phys. D: Appl.
the magnitude oNu,Re; /2 is independent of it and ap- Phys. 32 (1999) 577-585.

hes it | ! tant vi it del di [14] E. Magyari, B. Keller, Heat transfer characteristics of the separation
proaches Its value at constant viscosity model corresponding boundary flow induced by a continuous stretching surface, J. Phys. D:

to Pr andx. On the other hand, ingrgasingfor fixed |6, ]) Appl. Phys. 32 (1999) 2876-2881.
enhances the heat transfer coefficient for all Prandtl num- [15] L.E. Erickson, L.T. Fan, V.G. Fox, Heat and mass transfer on a moving
bers. However, at a specific value afwhere the competi- continuous flat plate with suction or injection, Indust. Engrg. Chem.

tion between the effect of variable viscosity and buoyancy __ Fundamentals 5 (1966) 19-25.

. ~1/2 . . [16] V.G. Fox, L.E. Erickson, L.T. Fan, Methods for solving the boundary
is balar_lced, théNu, Re_x is aImost_ independent @b, |. layer equations for moving continuous flat surfaces with suction and
Otherwise, these profiles dependrin the forced convec- injection, AIChE J. 14 (1968) 726—736.

tion region and o, and2 in the natural convection region.  [17] P-S. Gupta, A.S. Gupta, Heat and mass transfer on a stretching sheet
Critical values of buoyancy assisting and opposing flow are \;V;g suction or blowing, Canad. J. Chem. Engrg. 55 (6) (1977) 744~
obtained for predomlnatg natural cpnvectl_on fIQW US@FIg [18] C.K. Chen, M.I. Char, Heat transfer of a continuous stretching surface
as a parameter. Introducing the variable viscosity effect for with suction or blowing, J. Math. Anal. Appl. 135 (1988) 568-580.
large A reduces the shear stress at the surfacé,fer 0 as [19] M.E. Ali, On thermal boundary layer on a power-law stretched surface
6, tends to zero. However, at smallthe effect of variable with suction or injection, Internat. J. Heat Fluid Flow 16 (4) (1995)
viscosity is to increase the shear stress for assisting flow.  280-290. _ -
Finally critical values ofx, Corresponding to predominate [20] E. Magyarl,_M:E. Ali, B. Keller, Heat anq masstransfer<_:haracter|st|cs
b . d . . he di . of the self-similar boundary-layer flows induced by continuous surface

uoyancy assisting and opposing e _ECt on the dimension- stretched with rapidly decreasing velocities, Heat Mass Transfer 38
less shear stress, are tabulated for different Prandtl number  (2001) 65-74.

and viscosity/temperature parameigr [21] H.T. Lin, K.Y. Wu, H.L. Hoh, Mixed convection from an isothermal
horizontal plate moving in parallel or reversely to a free stream, Inter-
nat. J. Heat Mass Transfer 36 (1993) 3547-3554.
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